博客
关于我
新型RNN:将层内神经元相互独立以提高长程记忆 | CVPR 2018论文解读
阅读量:169 次
发布时间:2019-02-28

本文共 850 字,大约阅读时间需要 2 分钟。

在碎片化阅读盛行的时代,越来越多的人倾向于快速浏览论文,而不愿深入探索每篇论文背后的思考与发现。本文聚焦于一种名为IndRNN(独立循环神经网络)的新型RNN结构,探讨其在自然语言处理任务中的优势与创新之处。

论文亮点

传统RNN由于其循环结构导致梯度消失/爆炸问题,难以构建深层网络且对长序列的处理能力有限。LSTM和GRU虽然通过门控机制缓解了层内梯度问题,但门控机制的存在使得网络计算依然无法并行且计算复杂度较高。此外,LSTM在多层结构中仍然面临层间梯度衰减的问题,通常多层LSTM的层数不超过4层。

IndRNN通过以下几个关键创新解决了这些问题:

  • 将RNN层内神经元解耦,使其相互独立,从而提高了神经元的可解释性
  • 采用ReLU激活函数,既解决了层内梯度消失/爆炸问题,又增强了模型的鲁棒性
  • 设计了有序列表结构,使得模型能够处理更长的序列信息(超过5000时间步)

模型介绍

IndRNN的核心思想是通过将RNN层内神经元独立开来,类似于传统RNN但引入了ReLU激活函数。这种设计使得模型不仅能够处理长序列,还能构建深层网络。实验结果表明,21层的IndRNN在语言模型任务中表现优于传统RNN和LSTM结构。

实验介绍

实验部分首先在三个常见的RNN任务上进行评估,包括序列预测任务和MNIST分类任务。实验结果显示,IndRNN在处理长序列时展现出显著优势。例如,在处理5000步以上的序列时,IndRNN的性能远优于LSTM和传统RNN。此外,IndRNN在骨骼动作识别任务中也取得了良好的效果,验证了其在多个领域的适用性。

个人心得

IndRNN的设计理念颠覆了传统RNN的结构,为RNN模型的发展提供了新的思路。通过层内神经元的独立设计和ReLU激活函数的引入,IndRNN不仅解决了梯度问题,还为模型的深化和长序列处理提供了新的可能性。然而,Relu函数在某些情况下可能导致输出为零,这在实际应用中需要注意。此外,未来可以考虑引入Leaky ReLU以进一步提升模型的稳定性。

转载地址:http://tjlj.baihongyu.com/

你可能感兴趣的文章
NSUserdefault读书笔记
查看>>
NS图绘制工具推荐
查看>>
NT AUTHORITY\NETWORK SERVICE 权限问题
查看>>
NT symbols are incorrect, please fix symbols
查看>>
ntelliJ IDEA 报错:找不到包或者找不到符号
查看>>
NTFS文件权限管理实战
查看>>
ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
查看>>
ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
查看>>
ntp server 用法小结
查看>>
ntpdate 通过外网同步时间
查看>>
ntpdate同步配置文件调整详解
查看>>
NTPD使用/etc/ntp.conf配置时钟同步详解
查看>>
NTP及Chrony时间同步服务设置
查看>>
NTP服务器
查看>>
NTP配置
查看>>
NUC1077 Humble Numbers【数学计算+打表】
查看>>
NuGet Gallery 开源项目快速入门指南
查看>>
NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
查看>>
nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
查看>>
Nuget~管理自己的包包
查看>>